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1

Phase transitions in simple systems

Take a large piece of material and measure some of its macro-
scopic properties, for example its density, compressibility or mag-
netisation. Now divide it into two roughly equal halves, keeping
the external variables like pressure and temperature the same.
The macroscopic properties of each piece will then be the same
as those of the whole. The same holds true if the process is re-
peated. But eventually, after many iterations, something different
must happen, because we know that matter is made up of atoms
and molecules whose individual properties are quite different from
those of the matter which they constitute. The length scale at
which the overall properties of the pieces begin to differ markedly
from those of the original gives a measure of what is termed the
correlation length of the material. It is the distance over which
the fluctuations of the microscopic degrees of freedom (the posi-
tions of the atoms and suchlike) are significantly correlated with
each other. The fluctuations in two parts of the material much fur-
ther apart than the correlation length are effectively disconnected
from each other. Therefore it makes no appreciable difference to
the macroscopic properties if the connection is completely severed.

Usually the correlation length is of the order of a few inter-
atomic spacings. This means that we may consider really quite
small collections of atoms to get a very good idea of the macro-
scopic behaviour of the material. (This statement needs qualifi-
cation. In reality, small clusters of atoms will exhibit very strong
surface effects which may be quite different from, and dominate,
the bulk behaviour. However, since this is only a thought experi-
ment, we may imagine employing the theoretician’s device of peri-
odic boundary conditions, thereby eliminating them.) However,
the actual value of the correlation length depends on the external
conditions determining the state of the system, such as the temp-
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erature and pressure. It is well known that systems may abruptly
change their macroscopic behaviour as these quantities are
smoothly varied. The points at which this happens are called crit-
ical points, and they usually mark a phase transition from one
state of matter to another. There are basically two possible ways
in which such a transition may occur. In the first scenario, the
two (or more) states on either side of the critical point also co-
exist exactly at the critical point. However, even then they are
distinct from each other, in that they have different macroscopic
properties. Slightly away from the critical point, however, there is
generically a unique phase whose properties are continuously con-
nected to one of the co-existent phases at the critical point. In that
case, we should expect to find discontinuous behaviour in various
thermodynamic quantities as we pass through the critical point,
and therefore from one stable phase to another. Such transitions
are termed discontinuous or first-order. Well-known examples are
the melting of a three-dimensional solid, or the condensation of a
gas into a liquid. In fact, such transitions often exhibit hysteresis,
or memory effects, since the continuation of a given state into the
opposite phase may be metastable so that the system may take a
macroscopically long time to readjust. The correlation length at
such a first-order transition is generally finite.

However, the situation is quite different at a continuous tran-
sition, where the correlation length becomes effectively infinite.
The fluctuations are then correlated over all distance scales, which
thereby forces the whole system to be in a unique, critical, phase.
At a continuous transition, therefore, the two (or more) phases
on either side of the critical point must become identical as it
is approached. Not only does the correlation length diverge in a
continuous fashion as such a critical point is approached, but the
differences in the various thermodynamic quantities between the
competing phases, like the energy density and the magnetisation,
go to zero smoothly. It is the task of the theory to explain this
behaviour in a quantitative manner. Simple examples of continu-
ous transitions, to be described in more detail below, occur at the
Curie temperature in a ferromagnet, and at the liquid-gas critical
point in a fluid.

The fact that a very large number of degrees of freedom are
strongly correlated with each other makes the study of continu-
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ous phase transitions intrinsically difficult. By their nature, these
phenomena are not amenable to normal perturbative methods. It
is only within the last twenty-five years or so that analytic meth-
ods have been developed for dealing with such problems. These
methods constitute a whole new way of thinking about such phe-
nomena, which is called the renormalization group.

Although systems with large correlation lengths might appear
to be very complex, they also exhibit some beautiful simplifica-
tions. One of these is the phenomenon of universality. Many prop-
erties of a system close to a continuous phase transition turn out
to be largely independent of the microscopic details of the interac-
tions between the individual atoms and molecules. Instead, they
fall into one of a relatively small number of different classes, each
characterised only by global features such as the symmetries of the
underlying hamiltonian, the number of spatial dimensions of the
system, and so on. This phenomenon finds a simple and natural
explanation within the framework of the renormalization group.
Typically, close to a critical point, the correlation length and the
other thermodynamic quantities exhibit power-law dependences
on the parameters specifying the distance away from the criti-
cal point. These powers, or critical ezponents, are pure numbers,
usually not integers or even simple rational numbers, which de-
pend only on the universality class. One of the basic theoretical
challenges, then, is to explain why such non-trivial powers should
occur, and to predict their actual values.

The occurrence of power behaviour in the laws describing a sys-
tem is a symptom of scaling behaviour. Such dependences occur, of
course, in problems at many levels in the physical sciences. In the
most elementary cases, they are simply the result of dimensional
analysis. For example, once the inverse square law 1/r? for the
gravitational acceleration of a body a distance r from a point mass
is assumed, Kepler’s law that the orbital period T x #3/2, follows
immediately. (Note that, in general, such elementary arguments
lead to simple rational numbers for the exponents.) However, most
physical problems present us with more than one length scale,
and simple dimensional analysis is no longer adequate. Physical
quantities may then depend in an arbitrarily complicated manner
on the dimensionless ratios of these scales. Nevertheless, simpli-
fications may occur if there is a wide separation of scales in the
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problem. In that case, it may be permissible to neglect the shorter
length scales when discussing the large scale physics. This, in fact,
already occurs in the problem of planetary motion, where it may
be shown that the finite radius of the bodies has no significant
effect.

Similar results follow in the so-called ‘classical’ approaches to
the problem of continuous phase transitions. The approximate the-
ory to be developed in Chapter 2 implies that, close to the crit-
ical point of a ferromagnet, the correlation function G(r) of the
local fluctuations in the magnetisation obeys Laplace’s equation
over distance scales 7 much less than the correlation length ¢,
and therefore exhibits a 1/r behaviour in three dimensions, like
the gravitational potential. This problem would appear to have
two potentially important length scales: the microscopic length a
which specifies the typical distance between the fluctuating mag-
netic degrees of freedom, and the correlation length £. Thus, we
might be tempted to argue, in analogy with the planetary prob-
lem, that when £ > a, that is, very close to the critical point,
the microscopic length @ may be ignored. Under that assumption,
dimensional analysis then implies that G has the form

G(r) = ~(r/6), (L.1)

where f is some function, as yet unknown. From the magnetic cor-
relation function, we may infer the susceptibility x o [ G(r)d>r.
Substituting in the above form, we then find, after a change of
integration variables, that y o &2. This simple power law is essen-
tially a consequence of dimensional analysis, and is a typical result
of the ‘classical’ approach to critical behaviour, which predates the
renormalization group.

However, both experiments and studies of simplified lattice
models indicate that the above result is incorrect. The reason is
that, unlike the Kepler problem, critical behaviour is dominated
by the effects of fluctuations, and these fluctuations take place on
all length scales, all the way down to the microscopic distance a.
It is therefore not permissible simply to neglect a, even when it is
much smaller than the characteristic length &. It might then ap-
pear that little more can be said without further detailed analysis,
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since (1.1) is now replaced by the weaker relation

G(r) = = f(r/&,af6) (12)

However, it turns out that, for ¢/ < 1, although the function f
is not independent of this ratio, it nevertheless exhibits a simple
power law dependence, proportional to (a/£)", where 7 is a small
but non-zero exponent. As a consequence, the dependence of the
susceptibility on the correlation length has the form

N L (1.3)
Thus, scaling is, in a sense, recovered, but with an exponent 2—7
which does not follow from straightforward dimensional analysis.
The deviation 7 is an example of an anomalous dimension. The
existence of such behaviour demands, of course, an explanation. It
will turn out that this arises quite naturally within the framework
of the renormalization group.

Before discussing these general properties further, however, it
is useful to have at hand some very simple physical examples of
continuous critical behaviour in which these concepts may be il-
lustrated in a concrete fashion.

1.1 Phase diagrams
Uniazial ferromagnets

In a ferromagnet there are two interesting external parameters
which may be varied: the temperature 7" and the applied magnetic
field H. In the most straightforward case, the local magnetisation
is counstrained to lie parallel or anti-parallel to a particular axis.
The phase diagram (Figure 1.1) is simple. All the thermodynamic
quantities (e.g. specific heat, susceptibility) are smooth analytic
functions of T and H except on theline H = 0, T < T,. Across the
line T' < T, the magnetisation M, as a function of H, is discontin-
uous, having the form illustrated in Figure 1.2a. This discontinuity
is characteristic of a first-order transition, with a finite correlation
length. As T approaches the Curie point T, from below, however,
the discontinuity approaches zero, and the correlation length at
the transition diverges. The point H = 0, T = T, is an example
of a critical end point, at which the first-order transition becomes
continuous.
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AH

paramagnet

ferromagnet

Figure 1.1. Phase diagram of a uniaxial ferromagnet.

(@ T<T. by T=T, © T>T.

Figure 1.2. Magnetisation versus applied field, for various temper-
atures.

When T' < T, the two limits H — 0+ and H — 0— give dif-
ferent possible values + My for the magnetisation. Which one the
system chooses depends on its previous history. This is an exam-
ple of spontaneous symmetry breaking: although the hamiltonian
is invariant under simultaneous reversal of all the local magnetic
degrees of freedom, this symmetry is not respected by the equilib-
rium thermodynamic state. The onset of such symmetry breaking
is a common, although not a universal, characteristic of continu-
ous critical points. The magnetisation M, whose value measures
the amount of magnetic order in the material, is called the order
parameter for this transition. In most, but not all, examples of
critical behaviour, it is possible to identify one or more such or-
der parameters, and the behaviour of their local fluctuations often
provides a useful way of characterising the nature of the transition.
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As mentioned above, most of the quantities of interest exhibit
power law behaviour sufficiently close to the critical point. We
now give the definitions of the principal critical exponents which
characterise these power laws for the case of a ferromagnet. It is
useful to define two dimensionless measures of the deviation from
the critical point: the reduced temperature t = (T — T¢)/T., and
the reduced external magnetic field h = H/kpT.. The exponents
are

a: The specific heat in zero field C ~ A|t[~¢, apart from terms
which are regular in ¢t. Note that, in principle, one should con-
sider the possibility of different exponents a and ' for ¢t > 0 and
t < 0 respectively. However, it is an immediate consequence of
the renormalization group (in agreement with other exact re-
sults) that @ = o, and we shall henceforth cease to make a
distinction. a can be positive or negative, corresponding to ei-
ther a divergent spike or a cusp in the specific heat when plotted
against T. Although the exponent a is universal, the amplitude
A is not, and, moreover, A # A’ in general. However, a pre-
diction of the renormalization group is that the ratio A’'/A is
universal (see Section 3.9).

B: The spontaneous magnetisation limg 04 M o (—t)P.

v: Zero field susceptibility x = (0M/O0H)|g=o x [t|™7. Once
again, in principle different exponents should be defined for dif-
ferent signs of ¢, but in fact theory indicates that they should
be equal.

e At/Z(; = T., the magnetisation varies with h according to M «
[A[1°.

v: A more quantitative measure of the correlation length £ than
given above is through the asymptotic behaviour G(r) «
e~ "/¢/r(d=1/2 (for r > £) of the correlation function of the
fluctuations in the local magnetisation. Alternatively, it may
be defined through the second moment of this quantity, {2 =
S, r2G(r)/ T, G(r). In either case, it diverges as ¢ — 0, with
h = 0, according to £ « |[t|7¥. Once again, this has a meaning
either side of the critical point.

n: Exactly at the critical point, the correlation function does not
decay exponentially, but rather according to G(r) « 1/r4=2+7,
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z: Finally, there is an exponent relating to the time-dependent
properties close to the critical point. For example, the typical
relaxation time T diverges, as the critical point is approached,
according to 7 & £*. Since this exponent does not relate to the
static equilibrium properties, however, further discussion will
be deferred until Chapter 10.

This completes the commonly observed zoo of exponents for this
critical point. Although this nomenclature has come to be ac-
cepted for historical reasons, it will become clear in Chapter 3 that
these critical exponents are not the most fundamental quantities
from the theoretical perspective. Rather, they are simply derived
from a smaller set of numbers called the scaling dimensions.

Many of the definitions given above may be taken over with-
out modification to the Curie point in more general ferromagnets,
for example Heisenberg magnets where the local moments are free
to rotate in three dimensions. The only difference is in the low-
temperature phase, when a distinction must be drawn between
fluctuations of the local magnetisation parallel to, and perpendicu-
lar to, the direction of the spontaneous magnetisation. In this case,
the transverse susceptibility, the response of the magnetisation to
an applied field perpendicular to the spontaneous magnetisation,
remains infinite throughout the low-temperature phase, and the
critical exponent v must then be defined in terms of the longi-
tudinal susceptibility only. Similar generalisations apply to the
vicinity of the Néel point in antiferromagnets. In this case, it is
the sublattice, or staggered, magnetisation which plays the role of
the order parameter.

Simple fluids

The phase diagram of a generic substance in the temperature-
pressure plane usually has the form shown in Figure 1.3. Let us fo-
cus on the part of the phase diagram close to the liquid—gas critical
point at (T¢, p.). It looks quite similar to that for the ferromagnet
in the (T, H)-plane. Across the liquid-gas phase boundary, the
density p is discontinuous. The jump in the density piquid—pgas
approaches zero at the critical end point (7, p.). The isotherms,
curves of p versus p at constant T, are illustrated in Figure 1.4.
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critical
point

T

Figure 1.3. Phase diagram of a typical substance.

Figure 1.4. Isotherms near the liquid-gas critical point. The
dashed line is the coexistence curve.

Comparing this with the graphs of the magnetisation in a ferro-
magnet shown in Figure 1.2, we see that p—p. is analogous to
the applied field H, and p—p. to the magnetisation M. The main
physical difference between the systems is that, in a fluid the over-
all average density is usually fixed. This means that, underneath
the coexistence curve shown in Figure 1.4, the system separates
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into two coexisting phases, the relative volume occupied by each
being determined by their densities and the total mass. For a mag-
net, however, the total magnetisation is not usually fixed by the
conditions of the experiment.

The critical exponents at the liquid—gas critical point are there-
fore defined in analogy to those for the magnet:

o Cy x [t|[7 at p = p;

o pr, — pg x (—t)P gives the shape of the coexistence curve near
the critical point;

¢ isothermal compressibility xr « |t|™;

e p—p. x |pL — pa|® gives the shape of the critical isotherm near
the critical point.

The exponents v and 7 are defined as for the ferromagnet, with
G(r) now being the density-density correlation function.

One of the most remarkable results of universality is that the
critical exponents of a simple fluid are identical with those of uni-
axial ferromagnets.

1.2 Simple models

These equilibrium systems with many degrees of freedom, are, of
course, governed by the laws of statistical mechanics. This means
that the mathematical problem is at least well-defined. Physical
quantities are given in terms of averages with respect to the Gibbs
distribution e~#*.t In particular, thermodynamic quantities such
as the specific heat or the magnetisation are given by suitable
derivatives of the partition function

Z = Tre™P™, (1.4)
or, equivalently, of the free energy F' = —3~!1In Z. Even when the
hamiltonian H is relatively simple, computing Z is usually very
difficult. For a realistic hamiltonian, it is a hopeless task. This has
led to the consideration of drastically simplified models which, it is
hoped, nonetheless capture the essential physics. However, there is
a unique advantage in approaching these kinds of problem through
the study of models, which is not present in most areas of physics.

1 There should be no confusion between 8 = (IcBT)'1 and the critical expo-
nent denoted by the same symbol.
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In the study of atomic phenomena, for example, one tries to in-
vent a model which is as close to the true hamiltonian as possible,
but is nevertheless solvable, exactly or approximately. Once the
parameters have been suitably adjusted, the results of such stud-
ies are then expected to match the observed phenomena closely,
but, not of course exactly, since any model inevitably omits some
effects. Once rough agreement has been obtained, the model may
then be refined, so as to improve the accuracy of the description.

However, because of the phenomenon of universality in criti-
cal phenomena, one may hope to obtain results from very sim-
ple models which ezactly match the behaviour of real systems, at
least in those aspects which are universal. Moreover, in general,
these universal features should be independent of the microscopic
parameters of the model, and there is therefore no question of
parameter-fitting: the theory is either right or wrong. In reality
the situation is not quite as simple as this. Real or numerical
experiments never probe the true asymptotic region close to the
critical point, and therefore so-called corrections to scaling, which
contain non-universal and therefore adjustable parameters, often
need to be incorporated to obtain a good fit. Nevertheless, it is
true that theoretical models of critical behaviour may be tested
with much greater precision than occurs in most other areas of
condensed matter physics.

Even so, only a few of the simplest models in low dimensions
may be solved exactly, and although the mathematical methods
involved constitute a fascinating subject in their own right, the
details of this analysis have little bearing on the kinds of question
the physicist would like to have answered. This is partly because
the exact solution of a model does not, in general, differentiate
between those results which are universal and those which are
not. It is then by no means clear which properties of the exact
solution of the simplified model are supposed to carry over to
real systems. However, the renormalization group approach does
make such a distinction, through the arguments we shall develop
in Chapter 3. From this point of view, then, model hamiltonians
are more usefully regarded as frameworks within which to describe
the important microscopic features of a given universality class,
rather than as objects for exact solution.

An immediate simplification which may be made in almost all
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systems comes from the observation that, at finite temperatures,
the critical thermal fluctuations completely dominate the quantum
mechanical ones. This statement will be made more quantitative
in Section 4.5. Thus, the simplified models we study are almost
always described by a classical hamiltonian H, and the calculation
of the partition function involves a sum over classical phase space.
This is true even though the underlying physics driving the phe-
nomena (e.g. magnetic exchange interactions, superfluidity) may
be intrinsically quantum mechanical in nature.

Magnets

The simplest way of modelling a ferromagnet is to imagine quan-
tum mechanical spins s(r) localised on the sites r of a lattice. The
spins interact in pairs with a hamiltonian H = -1 3, J(r,7')
s(r)-s(r'), where J(r,7) falls off with the distance between r
and 7. If J > 0 the interaction is ferromagnetic. Application of
an external magnetic field corresponds to the addition of a term
—pH Y, s(r). This model is the quantum Heisenberg model. For
the reasons mentioned above, however, at finite temperature we
may ignore the quantum aspect of the spins, and regard the s(r)
as classical objects whose configuration space corresponds to the
points on the surface of a sphere.

In a real system the spins usually lie in a crystalline lattice
which does not possess full rotational symmetry. There may then
be crystalline fields acting on the spins which make them prefer
to align along certain axes. In the case of uniaxial anisotropy,
the spins prefer to lie along, for example, the 2-axis, and we may
then restrict the allowed values of the degrees of freedom to be
s%(r) = %1, in suitable units. This gives the Ising model, perhaps
the most famous and fundamental model of critical behaviour.
Alternatively, the spins may prefer to lie down in the zy-plane, so
that s(r) has only two components, satisfying s%(r)? + s¥(r)? = 1.
This gives the XY or planar model.

The XY model has another important realisation. In superfluid
helium, a finite fraction of the degrees of freedom of the system
condense into a macroscopic quantum state, whose wave function
¥(r) is a complex number. It turns out that for most purposes
we may ignore its quantum mechanical origin and treat ¥ as a
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classical field. Moreover, it is the fluctuations in the phase of ¥,
rather than in its modulus, which dominate the transition into
the normal state. Thus we may regard the length of ¥ as fixed.
Moreover, the short-range repulsion between the helium atoms
may be modelled by localising the degrees of freedom to lie on a
lattice, thereby arriving at a model mathematically identical to
the XY model. Similar considerations apply to superconductors,
which also provide examples of the XY universality class.

More generally, we may consider a spin having n components.
This gives the n-vector or O(n) model. The above three cases
correspond to n = 3,1,2 respectively, but it is mathematically
possible to think about this model for arbitrary n. As we shall see
in Chapter 9, even the limit n — 0 has a physical interpretation
in describing the statistics of long polymer chains.

Fluids

A simple classical fluid may be specified by the positions rq,...,rx
of its N particles. It is often convenient to work in the grand
canonical ensemble, in which case the grand partition function is

N
gt

[1]

where ( is proportional to the fugacity, and we consider only a
two-body interaction V', which is supposed to be short-ranged and
attractive, with a hard core repulsive component. This model is al-
ready quite difficult to analyse using renormalization group meth-
ods, and it is common to replace it with an idealisation called the
lattice gas model. The particles are now assumed to occupy the
sites r of a regular lattice, and the hard core interaction is mod-
elled by restricting the occupation number n(r) to take only the
values 0 or 1. The attractive part of the potential is described by
the interaction —23°, ./ J(r, *")n(r)n(r'), where J > 0. Then

E= Y () 22 S Inon() (1.6)
n{r)=0,1

This may be cast in a more familiar form by defining s(r) =
2n(r)—1, which takes the values +1. The terms in the exponential
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in (1.6) are then, apart from an unimportant constant,
583 J(r,r)s(r)s(r') + BH Y s(r), (L.7)

where H = 2kgTIn{ + 3,/ J(r, ). This is the hamiltonian for
the Ising model in a magnetic field! Thus, as long as the various
rather crude approximations which led to this result are justified
on the grounds of universality, the simple liquid-gas critical point
and the Curie point of uniaxial ferromagnets should be in the
same universality class, described by the simple Ising model. It
is interesting to note that the hamiltonian of the Ising model in
zero field has a symmetry under simultaneous reversal of all the
spins s(r) — —s(r). It is this symmetry which is broken sponta-
neously below the critical temperature. However, the simple fluid
has, in general, no such symmetry in its microscopic dynamics.
It is only close to the critical point that this symmetry emerges.
For example, the isotherms in Figure 1.4 are symmetrical under
reflection about the point (p.,p.) only close to this point. This is
an example of a common property of critical systems, that their
symmetries are often enhanced in the critical region. This has a
natural explanation within the framework of the renormalization
group.

There are several other common systems in the Ising universal-
ity class. For example, a binary fluid, consisting of two components
which are miscible above a certain critical temperature, and phase
separate below it, has a phase diagram very similar to that of Fig-
ure 1.4, with p now representing the relative density of one of
the components. Similarly, many structural phase transitions in
crystals are Ising-like. However, we should issue the warning that
such identifications are usually limited to the static equilibrium
behaviour. As we shall see in Chapter 10, the critical dynamics of
these systems may be quite different from each other.

Exercises

1.1 In a model of a binary alloy, each site of the lattice may be
occupied by a particle of type A or one of type B. The inter-
actions between the different types of particle are given by
Jaa(r —r'), Jpp(r — ') and J4p(r — r'). Map this problem



1.2

1.3

14

Ezercises 15

to an Ising model by assigning a variable s(r) to each site,
which takes the values +1 or —1 according to the two cases
described above. For what ranges of the interaction param-
eters should we expect to see critical behaviour of the Ising
type?

An Ising antiferromagnet may be described by the hamilto-
nian discussed in the text on p.12, with J(r,r') < 0. Show
that, on a hypercubic lattice, when the dominant interactions
are between nearest neighbours, it is possible by a redefini-
tion of variables to map this problem into that of a ferromag-
net, so that they are therefore in the same universality class.
What happens, for example, on a triangular lattice?

Real antiferromagnets have magnetic ions with quantum me-
chanical spins of spin §, not necessarily equal to %, and ex-
change interaction J. How would you map (approximately)
such a model onto the usual spin-% Ising model with some
effective exchange interaction Jeg? [Hint: compare their be-
haviours at high temperature.]

Atoms of a rare gas are adsorbed on a substrate. The ad-
sorbed atoms occupy the sites of a square lattice: however,
the radius of the adsorbed atoms is such that neighbouring
sites of the square lattice cannot be simultaneously occupied.
Show that at high densities and low temperature there are
two possible degenerate ground states for this system, and
hence deduce the form of the phase diagram in analogy with
that of the Ising model. How would the phase transition show
up in the structure factor as measured, say, by X-ray or low
energy electron diffraction?



